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Klaus Röbenack
Institute of Control Theory

Technische Universität Dresden
Dresden, Germany

klaus.roebenack@tu-dresden.de

Stefan Palis
Institute for Automation Engineering

Otto-von-Guericke University Magdeburg
Magdeburg, Germany

Department of Electrical Power Systems
NRU ”Moscow Power Engineering Institute”

Moscow, Russian Federation
stefan.palis@ovgu.de

Abstract—If a nonlinear system is differentially flat and a flat
output is known, the design of a linearizing feedback law is
straightforward. For state-space systems, this corresponds to the
input-to-state linearization. Otherwise, i.e., if the system is not
flat or no flat output can be found, we could carry out an input-
output linearization provided the system is minimum phase. In
this case, only certain parts of the systems dynamics are assigned
by the control law. From a theoretical point of view, this method
is based on the Byrnes-Isidori normal form. A less common
approach is the usage of the non-flat output in order to carry
out a linearization in connection with the generalized controller
canonical form [8]. The linearization is achieved by a dynamic
extension. The existence of an alternative linearization method
may be advantageous from a computational point of view and
gives additional degrees of freedom, e.g. allowing for a higher-
order of the desired closed-loop dynamics. Both approaches are
illustrated on the nonlinear boost converter model.

Index Terms—Flat systems, non-flat output, zero dynamics,
minimum phase, dynamic extension

I. INTRODUCTION

The concept of differential flatness introduced by Fliess et
al. [9] more than twenty years ago had a great impact on
control theory. If a flat output is known, controller design can
be simplified significantly. Unfortunately, deciding whether a
system is flat or computing the flat output are often difficult
tasks. Although many researches worked on this problem and
its mathematical background as well as on the implementation
of appropriate software packages [1], [2], [10]–[13], [26], [35],
[36], no general solution has been found.

Another approach to nonlinear control is exact feedback
linearization [21]. A single-input single-output system is flat
if and only if it is exactly input-to-state linearizable [42].
The situation is more complicated for multiple-input multiple-
output systems [25]. The relation between a flat and a non-flat
output is investigated in [18].

If a system has a well-defined relative degree, one can
design an input-output linearizing feedback law provided the
system is minimum phase [22]. If the relative degree is strictly
less then the dimension of the state-space, this approach im-
poses new dynamics only on a submanifold of the state-space.
In contrast, applying dynamic extension [8] allows to generate

new linear dynamics on the full state-space. Moreover, an
explicit input-to-state linearization is avoided as the control
law is derived from a non-flat output.

The paper is structured as follows. In Section II we recall
some control theoretic preliminaries. In Section III we discuss
the controller design by dynamic extension for minimum phase
systems. Further research to extend this approach to a broader
class of systems is discussed in Section V. Finally, we draw
some conclusions in Section VI.

II. PRELIMINARIES

A. Relative Degree and Exact Input-Output Linearisation

Consider a nonlinear input affine system

ẋ = f(x) + g(x)u, y = h(x) (1)

with vector fields f, g : M → Rn and a scalar field h :
M → R defined on an open subset M ⊆ Rn. We assume
that all maps are sufficiently smooth. The Lie derivative of the
scalar field h along the vector field f is defined by Lfh(x) :=
h′(x)f(x). System (1) has a relative degree r at a point x0 ∈
M if Lgh(x) = LgLfh(x) = · · · = LfgL

r−1
f h(x) = 0 for

all x in a neighborhood of x0 and LgL
r−1
f h(x0) 6= 0. The

single-input single-output system (1) is flat if and only if there
exists an output with relative degree r = n, see [42].

Now, we assume that system (1) is flat but has a well-defined
relative degree r < n w.r.t. the output y, i.e., y is a non-flat
output. Then we have

y = φ1(x) = h(x),
ẏ = φ2(x) = Lfh(x),

...
...

y(r−1) = φr(x) = Lr−1f h(x).

(2)

Due to the relative degree, the time derivative of order r
depends explicitly on the input u:

y(r) = Lrfh(x) + LgL
r−1
f h(x)u. (3)
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Using this equation we can linearize the input-output behavior
of the system setting

Lrfh(x) + LgL
r−1
f h(x)u

!
= v

with the virtual input v. The associated control law is given
by

u =
1

LgL
r−1
f h(x)

(
v − Lrfh(x)

)
. (4)

This results in linear dynamics

y(r) = v (5)

in form of a chain of r integrators. This linear system can be
stabilized by a state feedback

v = −k0z1 − · · · − kr−1zr + k0w (6)

with coefficients k0, . . . , kr−1 and the reference variable w.
The associated control law reads

u =
1

LgL
r−1
f h(x)

(
k0w −

r∑
i=0

kiL
i
fh(x)

)
(7)

with kr := 1. Replacing the components of the state by the
output and its time derivatives as in (2) we can write the
resulting system as

y(r) + kr−1y
(r−1) + · · ·+ k0y = k0w. (8)

B. Byrnes-Isidori Normal Form

To investigate the remaining dynamics of the system, the
coordinates φ1, . . . , φr from (2) are augmented by n − r
additional functions φr−1, . . . , φn such that

Lgφi(x) ≡ 0 for i = n+ 1, . . . , n. (9)

The resulting change of coordinates

z = Φ(x) (10)

transforms system (1) into the Byrnes-Isidori normal
form [21], [22]

ż1 = z2
...

żr−1 = zr
żr = α∗(z) + β∗(z)u
żr+1 = q1(z)

...
żn = qn−r(z)
y = z1.

(11)

with
α∗(z) = Lrfh(Φ−1(z))

β∗(z) = LgL
r−1
f h(Φ−1(z)).

(12)

Under this transformation, the system is decomposed into two
subsystems. The first subsystem is defined by the coordinates
z1, . . . , zr, whereas the second subsystem by zr+1, . . . , zn.

System (1) is linearized by the feedback (4) corresponding
to

u =
1

β∗(z)
(v − α∗(z)) (13)

in the transformed coordinates. The second subsystem does
not directly depend on the input u due to (9). With (13), the
dynamics of the first subsystem are decoupled from the second
subsystem. In order to achieve stability of the whole controlled
system, we assume that the second subsystem is asymptotically
stable for z1 = · · · = zr = 0. The resulting dynamics is
called zero dynamics. A system with asymptotically stable
equilibrium of the zero dynamics is called minimum phase.

Note that the symbolic computation of the Byrnes-Isidori
normal form or the zero dynamics can be challenging [5], [31].
In these cases, one could try of investigate the stability using a
Taylor linearization of system (1) in the original coordinates.
Such a equilibrium point is called hyperbolic if no eigenvalue
of the associated Jacobian lies on the imaginary axis. Then, the
linearized system is asymptotically stable iff the equilibrium
point of the original nonlinear system is asymptotically stable
due to the Theorem of Hartman and Grobman [3], [17].

C. Generalized Controller Canonical Form

Now, we will construct a different frame of coordinates
for the second subsystem. We start with the output time
derivative (3), which depends on u. The next time derivative
additionally depends on u̇ and is more complicated

y(r+1) =Lr+1
f h(x) + LgL

r
fh(x)u+ LfLgL

r−1
f h(x)u

+ L2
gL

r−1
f h(x)u2 + LgL

r−1
f h(x)u̇, (14)

see [24]. We use the time derivatives

y(r) = φr(x, u)
y(r+1) = φr+1(x, u, u̇)

...
y(n) = φr+1(x, u, u̇, ü, . . . , u(n−r+1))

(15)

to augment the maps (2) into a change of coordinates

z = Φ(x, u, u̇, , ü, . . . , u(n−r+1)) (16)

transforming (1) into the generalized controller canonical form
(GCCF) [8]:

ż1 = z2
...

żn−1 = zn
żn = γ(z, u, u̇, ü, . . . , u(n−r)).

(17)

Since system (1) is affine in input u, the map γ is affine in
the highest order time derivative u(n−r), i.e.,

γ(z, u, u̇, . . . , u(n−r)) =

α(z, u, . . . , u(n−r−1)) + β(z, u, . . . , u(n−r−1))u(n−r). (18)

Remark 1: Because the right hand side of system (17)
depends explicitly on the time derivatives u̇, ü, . . . , u(n−r) of
the input u, it is not a classical but a generalized state-space
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description. Similarly, the transformation (16) is a generalized
state transformation.

Remark 2: The linearization

a0 = − ∂γ
∂z1

, . . . , an−1 = − ∂γ
∂zn

b0 = ∂γ
∂u , . . . , bn−r = ∂γ

∂u(n−r)

of system (17) in a considered operating point yields the
differential equation

y(n) + an−1y
(n−1) + · · ·+ a0y = bn−ru

(n−r) + · · ·+ b0u.

The corresponding transfer function has the form

G(s) =
Y (s)

U(s)
=

bn−rs
n−r + · · ·+ b1s+ b0

sn + an−1sn−1 + · · ·+ a1s+ a0
. (19)

If the zero dynamics is hyperbolic, its stability can be deduced
from numerator polynomial of (19).

III. DYNAMIC EXTENSION FOR MINIMUM PHASE
SYSTEMS

A. Design Procedure
Consider a nonlinear system (1) with a relative degree

r < n. The system can be transformed into the GCCF (17).
We assume that the considered operating point of the zero
dynamics is hyperbolic and asymptotically stable, i.e., the
numerator polynomial of (19) is a Hurwitz polynomial.

First, we want to compensate the system’s nonlinearities by
feedback. In order to meet this goal we set

żn = γ(z, u, u̇, . . . , u(n−r))
= α(z, u, . . .) + β(z, u, . . .)u(n−r)

!
= v

(20)

with the virtual input v. Due to the structure (18) of the map γ,
we can resolve (20) w.r.t. the highest order time derivative of
the input signal:

u(n−r) =
v − α(z, u, . . .)

β(z, u, . . .)
. (21)

Applying (21) to (20) results in a chain of integrators

y(n) = v (22)

similar to (5) but of length n.
Next, we want to steer the system to the dynamics

y(n) + kn−1y
(n−1) + · · ·+ k0y = k0w

of a linear system with the reference variable w, where
k0, . . . , kn−1 are the coefficients of the desired characteristic
polynomial

sn + kn−1s
n−1 + · · ·+ k1s+ k0. (23)

This linear dynamics can be imposed into (22) by the feedback

v = −k0z1 − · · · − kn−1zn + k0w (24)

as in (6). Combining the linearizing feedback (21) with (24)
yields

u(n−r) = −α(z, u, . . .) + k0z1 + · · ·+ kn−1zn − k0w
β(z, u, . . .)

.

(25)

We can express this control law in original coordinates using
the inverse transformation of (16). The structure of the result-
ing controller is shown in Fig. 1. The controller does not only
feed back the state, but also contains a chain of integrators
to generate u from u(n−r). The dynamics w.r.t. u corresponds
to the zero dynamics which is required to be asymptotically
stable.

B. Implications and Advantages

The alternative approach to feedback linearization has some
interesting properties for the computation:

Remark 3: In flatness based control, the GCCF is also used
for quasi-static state feedback [6], [33], [34] of multiple-input
multiple-output systems. For quasi-static state feedback, the
input-output relations are solved w.r.t. the input signals, i.e., for
the lowest order time derivatives of the inputs. This way one
avoids a dynamic extension, see [21, Sect. 5.4]. The approach
discussed here is somehow reciprocal. It was mentioned in [8]
but rarely used in practice. This way, we don’t explicitly know
the solution of (9), which is formally a partial differential
equation [5], [31].

Remark 4: The symbolic computation of a flat output re-
quires sophisticated methods from computer algebra [1], [13].
Dynamic extension avoids this obstacle. As a matter of fact,
symbolic computations can be omitted. The time derivatives of
the output required to construct the control law (25) in original
coordinates can be calculated using alternative differentia-
tion technique called automatic or algorithmic differentiation,
see [16], [32].

Several design methods are directly based on appropriate
normal forms. Quite often, the explicit computation of the
inverse transformations may be difficult. With the dynamic
extension one has a further transformation, which may be
advantageous:

Remark 5: For example, the observer suggested in [23]
extends the high gain observer form [14] to the first subsystem
of the Byrnes-Isidori normal form (11). Although the observer
gain can be implemented in the original coordinates, the
transformation is still required. If solving (9) is avoided using
an input-output form as in [29], it becomes much more difficult
to show the convergence of the observer. In a manner similar
to [14] one could also design a high gain observer using
GCCF (17). The occurrence of time derivatives of the input
is not a problem since these signals are provided by the
controller (25). Contrary ot [23], [29], where a detectability
condition concerning the second subsystem is required, we can
impose full order dynamics to the observer.

Remark 6: Internal model control (IMC) is widely used in
process engineering [19]. In case of nonlinear systems, the
controller can easily be computed for flat systems if the flat
output is known or for minimum phase (possibly no-flat) input-
output linearizable systems [38], [39]. The dynamic extension
can be adapted to these methods, where the inversion based
on (4) and (5) in the sense of a Hirschorn inverse [20] is
replaced by the dynamic inversion (21) and (22). This results
in an alternative control law.

275



Feedback (25) u(n−r) ∫ ∫u̇ System (1)w u y

· · · x

Fig. 1. Structure of the dynamic controller (25) with system (1)

d = 0I L

d = 1

C RE V

Fig. 2. Network model of the boost converter

IV. EXAMPLE

A boost converter or step-up converter is a DC to DC
converter with an output voltage V greater than the source
voltage E. The network model of a boost converter with load
resistor R is sketched in Fig. 2. The converter consists of two
reactive network elements, an inductor L and a capacitor C.
The switch is typically a BJT, MOSFET, or IGBT.

The network equations are derived from Kirchhoff’s circuit
laws with the inductor current I . Using pulse-width modula-
tion (PWM), the discrete switching signal d(t) ∈ {0, 1} can be
modeled as a continuous input signal u ∈ [0, 1] called supply
rate. We obtain the averaged model

ẋ1 = −(1− u) 1
Lx2 + E

L ,
ẋ2 = (1− u) 1

Cx1 −
1
RCx2

(26)

with the state vector x = (x1, x2)T = (I, V )T . We take the pa-
rameter values from [4, Sect. 8.6.1]: E = 15 V, L = 0.5 mH,
C = 1000 µF, R = 10 Ω. We consider the equilibrium point
u0 = 0.4, x01 = 25/6 A = 4.16̄ A, x02 = 25 V. The linearized
system with the output (28) has the transfer function

G(s) =
50000(s+ 200)

s2 + 100s+ 720000
(27)

The roots s1,2 = −50± 50
√

287 of the denominator polyno-
mial are the eigenvalues of the open-loop system. Since these
eigenvalues lie in the complex left half-plane, the equilibrium
point is hyperbolic and asymptotically stable. In the time do-
main, this complex conjugate pair of eigenvalues corresponds
to declining oscillations.

A. Input-Output Linearization

The feedback linearization of this system has been investi-
gated in many publications [7], [15], [27], [40], [41]. We use
the inductor current as an output

y = x1. (28)

The time derivative

ẏ = ẋ1 =
(u− 1)x2 + E

L
=
E − x2
L︸ ︷︷ ︸

Lfh(x)

+
x2
L︸︷︷︸

Lgh(x)

u (29)

depends explicitly on the input u. We have Lgh(x) 6= 0 for
x2 6= 0, i.e., the system has relative degree r = 1 if x2 6= 0.
The linearizing and stabilizing control law (8) reads

u = 1
Lgh(x)

(k0(w − h(x)− Lfh(x))

= x2−E−k0L(x1−w)
x2

(30)

with the coefficient k0 > 0.

B. Byrnes-Isidori Normal Form

The zero dynamics of this system have been computed
symbolically in [27], [40]. To verify these results, we consider
the transformation (10) given by

z1 = x1
z2 = Lx21 + Cx22.

(31)

The inverse transformation x = Φ−1(x) has the form

x1 = z1

x2 =

√
z2−Lz21

L .
(32)

The nonlinearities (12) of the first subsystem are calculated as

α∗(z) = 1
C

√
z2−Lz21

L − z1
RC

β∗(z) = − 1
C

√
z2−Lz21

L .
(33)

Note that the transformation (32) and the nonlinearities (33)
are not defined for z2 < Lz21 .

C. Zero Dynamics

From the transformations (31) and (32) we calculate the
internal dynamics, i.e., the dynamics of the second subsystem
of the Byrnes-Isidori normal form:

ż2 = 2Ez1 − 2
z2 − Lz21
RC

. (34)

The zero dyanmics is obtained setting z1 = 0:

ż2 = −2
z2
RC

. (35)

The zero dynamics (35) is asymptotically stable, i.e., the sys-
tem is minimum phase. We verify this result using the transfer
function (27). The numerator polynomial has a single root at
s = −200. Therefore, the zero dynamics is hyperbolic and
asymptotically stable. Hence, system (26) with the output (28)
is minimum phase.
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D. Linearization by Dynamic Extension

Now, we transform system (26) into GCCF (17). From (28)
and (29) we obtain the change of coordinates (16) as

z = Φ(x, u) =

(
x1

(u−1)x2+E
L

)
(36)

with the inverse

x = Φ−1(x, u) =

(
z1

Lz2−E
u−1

)
. (37)

Applying this transformation to system (26) results in the
GCCF

ż1 = z2

ż2 = − z2+R(u−1)2−E
CLR + Lz2−E

L(u−1) u̇

y = z1.

(38)

Note that the transformations (36) and (37) as well as the
system (38) are defined anywhere except for u = 1.

The desired dynamics are described by a characteristic
polynomial (23) with n = 2. The polynomial is Hurwitz iff
k0, k1 > 0. The feedback law (25) reads

u̇ =− (u−1)(L(CRk1−1)z2−R(u2−2u−CLk0+1)z1−CLRk0w+E)
CR(Lz2−E)

=− (CRk1−1)(u−1)x2−R(u2−2u−CLk0+1)x1−CLRk0w+CERk1
CRx2

(39)

where the transformed coordinates are replaced by the original
coordinates using (36).

E. Simulation Results

We want to steer the system to an output voltage of 25 V
starting from the initial values x1(0) = 2.6̄ A and x2(0) =
20 V as in [30]. The open-loop system (26) is simulated with
the input u0 = 0.4. For the control laws (30) and (39) we
used the reference current w = 4.16̄ A. For the input-output
linearization by (30) we assign a single eigenvalue s1 = −300,
i.e., k0 = 300. For the control law based on the GCCF (39)
we select the first eigenvalue identical to the input-output
linearization, i.e. s1 = −300, and the second eigenvalue as
s2 = −3000. The corresponding coefficients are k0 = 900000
and k1 = 3300. In case of (39) we use the initial value
u(0) = 0.4. Fig. 3 shows the simulation results. As can be
seen the controller based on the GCCF can achieve a faster
convergence.

V. FUTURE WORK

Applying the described approach, i.e., dynamic extension
for a system in GCCF, to a system with an unstable zero
dynamics does not result in the desired closed-loop dynamics.
This should be clear in the case of linear systems, where this
approach resembles the pole/zero cancellations in the right-
half plane. In case of a nonlinear system with unstable zero
dynamics, the proposed compensation-based control design
procedure results in an unstable closed-loop system and thus
cannot be applied directly. It is well-known, that the location of
system zeros, in case of a linear system, cannot be influenced

by feedback. Similarly, feedback cannot be applied to stabilize
the zero dynamics and solve the aforementioned problem.
However, as has been shown in [37], augmenting the system
with a parallel compensator, i.e., a dynamical system in
parallel to the investigated process, adds a degree of freedom
to influence the zero location and thus the stability of the
zero dynamics of the new augmented process. A systematic
procedure, which allows to design parallel compensators re-
sulting in stable zero dynamics for linear systems has been
presented in [28]. Therefore, future work will be concerned
with controller design for non-minimum phase systems. In
case of the example system, we want to design a controller
directly using the capacitor voltage as controlled output.

VI. CONCLUSIONS

We provided an example for a comparatively unusual ap-
proach in the field of exact feedback linearization. Contrary
to standard approaches, the controller design is not based on
the Byrnes-Isidori normal form. Our control law is based on a
dynamic extension. Different to [21, Chapter 5], the dynamic
extension is not used to achieve (otherwise not well-defined)
relative degree. We avoid the difficulty to compute a flat
output. Future work will be concerned with the extension to
multiple-input multiple-output systems as well as to the non-
minimum phase systems.
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[10] M. Fliess, J. Lévine, Philippe Matrin, and P. Rouchon. A Lie-Bäcklund
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